GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S1

Paper G

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

S1 Paper G - Marking Guide

1. (a) $0.1+0.15+0.2=0.45$

A1
M1 A1
M1 A1
M1 A1
(7)
2. (a) e.g. they earn less from regular hrs so need more to supplement income B1
(b) $S_{p p}=420.58-\frac{86^{2}}{18}=9.69111 \quad$ M1
$S_{h h}=830.25-\frac{104.5^{2}}{18}=223.569 \quad$ M1
$S_{p h}=487.3-\frac{86 \times 104.5}{18}={ }^{-} 11.9778 \quad$ M1
$r=\frac{-11.9778}{\sqrt{9.69111 \times 223.569}}=-0.2573 \quad$ M1 A1
(c) weak -ve correlation gives some support to hypothesis B2
(8)
3. (a) $\bar{y}=\frac{37}{80}=0.4625$ M1
$\bar{C}=(250 \times 0.4625)+3250=£ 3366$ (nearest $£)$
M1 A1
std. dev. of $y=\sqrt{\frac{2317}{80}-0.4625^{2}}=5.3618$
M1
std. dev. of $C=250 \times 5.3618=£ 1340$ (nearest $£$)
M1 A1
(b) used midpoints to represent data in each group

B1
(c) median $<$ mean \therefore +vely skewed

B1
e.g. most cost a similar amount but some people spend a lot more B1
(9)
4. (a) $\mathrm{P}\left(Z<\frac{38.2-32.5}{\sqrt{18.6}}\right)=\mathrm{P}(Z<1.32)=0.9066$

M2 A1
(b) $\mathrm{P}\left(\frac{31-32.5}{\sqrt{18.6}}<Z<\frac{35-32.5}{\sqrt{18.6}}\right)=\mathrm{P}(-0.35<Z<0.58)$

M2

$$
=\mathrm{P}(Z<0.58)-\mathrm{P}(Z<-0.35) \quad \text { M1 }
$$

$$
=0.7190-0.3632=0.3558
$$

A1
(c) $\mathrm{P}\left(Z>\frac{110-\mu}{7.2}\right)=0.138$

M1
$\frac{110-\mu}{7.2}=1.09 ; \mu=102$ (3sf)
M1 A2
5. (a) $\quad \sum f x=146 ;$ mean $=\frac{146}{85}=1.72$ (3sf)

M1 A1
$\sum f x^{2}=312$
M1
std. dev. $=\sqrt{\frac{312}{85}-(1.7176)^{2}}=0.849(3 \mathrm{sf})$
M1 A1
(b) $\quad \sum \mathrm{P}(x)=19 k+16 k+11 k+4 k=50 k=1 \quad \therefore k=\frac{1}{50}$

M2 A1
(c) $\quad \sum x \mathrm{P}(x)=\frac{19}{50}+\frac{32}{50}+\frac{33}{50}+\frac{16}{50}=2$

M1 A1
(d) e.g. mean of model not very close \therefore not very suitable

B1
6. (a)

(b) $\quad(0.65 \times 0.7)+(0.35 \times 0.45)=0.6125 \quad\left(\frac{49}{80}\right)$
(c) $\quad \mathrm{P}\left(1^{\text {st }}\right.$ serve in \mid won $)=\frac{\mathrm{P}\left(1^{\text {st }} \text { serve in } \cap \text { won }\right)}{\mathrm{P}(\text { won })}$ M1

$$
=\frac{0.65 \times 0.7}{0.6125}=0.743(3 \mathrm{sf}) \quad\left(\frac{26}{35}\right)
$$

M1 A1
(d) $\quad \mathrm{P}\left(1^{\text {st }}\right.$ serve not in \mid lost $)=\frac{\mathrm{P}\left(1^{\text {st }} \text { serve not in } \cap \text { lost }\right)}{\mathrm{P}(\text { lost })}$

$$
\begin{equation*}
=\frac{0.35 \times 0.55}{1-0.6125}=0.497(3 \mathrm{sf}) \quad\left(\frac{77}{155}\right) \tag{14}
\end{equation*}
$$

7. $(a) \quad P(£)$

(b) $S_{l p}=159.77-\frac{15.8 \times 46.6}{7}=54.5871$

M1
$S_{l l}=60.14-\frac{15.8^{2}}{7}=24.4771$
M1
$b=\frac{54.5871}{24.4771}=2.2301$
M1 A1
$a=\frac{46.6}{7}-\left(2.2301 \times \frac{15.8}{7}\right)=1.6234$
M1 A1
$P=1.62+2.23 l$
A1
(c) increase in price in £ per extra metre of tubing

B1
(d) $1.62+(2.23 \times 5.2)=£ 13.22$

M1 A1
(e) e.g. machine may only be able to produce tubes up to a certain length so longer ones would be very difficult and expensive to make

B2
(15)

Total
(75)

Performance Record - S1 Paper G

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{aligned} & \text { discrete } \\ & \text { r. v. } \end{aligned}$	pmcc	mean + std. dev. with coding	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { normal } \\ \text { dist. } \end{array} \end{array}$	mean, modelling, discrete	probability	scatter diagram, regression	
Marks	7	8	9	11	11	14	15	75
Student								

